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ABSTRACT: To examine the atmospheric responses toArctic sea ice variability in theNorthernHemisphere cold season (from

October to the following March), this study uses a coordinated set of large-ensemble experiments of nine atmospheric general

circulationmodels (AGCMs) forcedwith observeddaily varying sea ice, sea surface temperature, and radiative forcings prescribed

during the 1979–2014 period, together with a parallel set of experiments whereArctic sea ice is substituted by its climatology. The

simulations of the former set reproduce the near-surface temperature trends in reanalysis data, with similar amplitude, and their

multimodel ensemble mean (MMEM) shows decreasing sea level pressure over much of the polar cap and Eurasia in boreal

autumn. The MMEM difference between the two experiments allows isolating the effects of Arctic sea ice loss, which explain a

large portion of theArctic warming trends in the lower troposphere and drive a small but statistically significant weakening of the

wintertimeArctic Oscillation. The observed interannual covariability between sea ice extent in the Barents–Kara Seas and lagged

atmospheric circulation is distinguished from the effects of confounding factors based on multiple regression, and quantitatively

compared to the covariability inMMEMs. The interannual sea ice decline followed by a negative North Atlantic Oscillation–like

anomaly found in observations is also seen in the MMEM differences, with consistent spatial structure but much smaller am-

plitude. This result suggests that the sea ice impacts on trends and interannual atmospheric variability simulated byAGCMs could

be underestimated, but caution is needed because internal atmospheric variability may have affected the observed relationship.
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1. Introduction

The Arctic climate has experienced profound changes

over the past decades, as its surface air temperature has

risen 2–3 times faster than the global averaged temperature

(Serreze et al. 2009; Screen and Simmonds 2010; Cowtan

and Way 2013) and sea ice extent and thickness have sig-

nificantly decreased (Meehl et al. 2007; Serreze et al. 2007;

Stroeve et al. 2012). The Arctic sea ice decline has been

shown to exert strong impacts on local weather, ecosystem,

human communities, industrial activities, and polar com-

mercial shipping routes (e.g., Jung et al. 2016). The Arctic

warming and sea ice decline are expected to continue in

response to increasing greenhouse gas (GHG) concentra-

tion andmultiple reinforcing feedbacks (Pithan andMauritsen

2014; Döscher et al. 2014; Wendisch et al. 2017; Stuecker

et al. 2018; Dai et al. 2019). A summer ice-free Arctic could

be reached around the middle of the twenty-first century

based on the consensus of climate model projections (e.g.,

Overland and Wang 2013; Stroeve et al. 2012; Screen and

Deser 2019).

In contrast, the remote influence of Arctic sea ice changes

on the midlatitudes and the tropics remains controversial
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(e.g., Cohen et al. 2014, 2020; Walsh 2014; Barnes and Screen

2015; Overland et al. 2016; Peings 2019; Blackport et al. 2019,

2020; Mori et al. 2019a,b; Screen and Blackport 2019). Indeed,

the retreat of the sea ice edge allows more heat andmoisture to

enter the atmosphere in the high latitudes during boreal au-

tumn and winter and reduces the equator-to-pole temperature

gradient, which could weaken or shift the midlatitude jet

stream (e.g., Francis and Vavrus 2012; Deser et al. 2015;

Ronalds et al. 2018; Blackport et al. 2019; Blackport and

Screen 2020a). On the other hand, the prevailing tropical

warming in the middle and high troposphere associated with a

decline of the moist adiabatic lapse rate would increase the

equator-to-pole temperature gradient as the climate warms

(Bony et al. 2006), opposing the influences of Arctic sea ice

decline (e.g., Oudar et al. 2017; Blackport and Kushner 2017;

Sun et al. 2018). Such a tug-of-war and the influence of other

forcings make it hard to single out the impacts of Arctic sea ice

loss on the midlatitude atmospheric circulation using obser-

vational or reanalysis datasets alone. Despite this, by assuming

that the atmospheric response to the long-term sea ice loss is

the same as that to interannual pan-Arctic sea ice fluctuations

with identical spatial patterns, which could be more easily

singled out, Simon et al. (2020) provided an estimate of the

Arctic sea ice loss impacts on wintertime atmospheric circu-

lation based on observational and reanalysis datasets.

Because Arctic sea ice forcing (sea ice concentration or

thickness) can be specified, numerical experiments using at-

mospheric general circulation models (AGCMs) or coupled

global climate models (CGCMs) have been extensively used to

investigate the impacts of Arctic sea ice change (e.g., Peings

and Magnusdottir 2014; Sun et al. 2015; Zhang et al. 2018;

Ogawa et al. 2018; Smith et al. 2019; Liang et al. 2020). Most

AGCM and CGCM studies have been conducted by compar-

ing the differences in atmospheric state between high and low

(usually very low) sea ice conditions, but they found a full

spectrum of atmospheric circulation responses (Cohen et al.

2020). For example, several AGCM experiments, in which a

reduced Arctic sea ice extent was specified, gave rise to an

atmospheric circulation response resembling a negative Arctic

Oscillation (AO; also referred to as the northern annularmode;

Thompson and Wallace 1998)/North Atlantic Oscillation (NAO;

Barnston and Livezey 1987) pattern (e.g., Seierstad and Bader

2009; Peings and Magnusdottir 2014), while others presented a

weak or opposite response (e.g., Singarayer et al. 2006; Strey et al.

2010; Cassano et al. 2014; Screen et al. 2014). These inconsis-

tencies among modeling studies may reflect the large internal

atmospheric variability that can overshadow the effects ofArctic

sea ice forcing as the signal-to-noise ratio is small (Screen et al.

2014; Liang et al. 2020). Moreover, mean state biases among

models and different experimental designs may affect the sim-

ulated circulation response (e.g., Smith et al. 2017, 2019; Deser

et al. 2020).

The long-term trends of atmospheric responses due toArctic

sea ice loss have been investigated by comparing ensemble

AGCM simulations with prescribed time-varying Arctic sea ice

concentration (SIC) and corresponding ones where the SIC

evolution was replaced by its climatological cycle, in some

cases using the same time-varying evolution of sea surface

temperature (SST), greenhouse gases (GHGs), aerosol, and other

forcings [often called the Atmospheric Model Intercomparison

Project (AMIP)-style simulations] (e.g., Screen et al. 2014;

Perlwitz et al. 2015; Sun et al. 2016). If models behave suffi-

ciently linearly and enough ensemble members are available,

the differences of atmospheric trends between the former and

the latter should reflect the effects of the sea ice decline. These

studies suggested a large local near-surface influence of the

Arctic sea ice loss, but little impact on the large-scale atmo-

spheric circulation. However, they only used two different

AGCMs, so that the number of ensemble members was lim-

ited. Note that a larger multimodel ensemble was used by

Ogawa et al. (2018), but as they compared the response to the

time-varying SST evolution with that to the SST climatological

cycle while the same SIC evolution and transient forcings were

prescribed, the impact of sea ice loss could not be directly es-

timated. Hence, further assessment of the performance of the

state-of-the-art AGCMs in simulating the effects of Arctic sea

ice decline on the atmospheric circulation is needed.

Because it is difficult to single out the Arctic sea ice effects

on the long-term trends in observations, one can attempt to

establish model fidelity by comparing their response to inter-

annual SIC fluctuations to that estimated from observations,

using statistical methods. Indeed, because the long-term trends

can be largely removed before analysis, the influence ofGHGs,

aerosols, and other slowly varying external forcings is likely

greatly reduced, and attribution of atmospheric circulation

fluctuations to interannual sea ice changes should be easier,

provided cause and effect can be distinguished despite large

internal atmospheric variability, and possible confounding factors

are taken into account (e.g., Simon et al. 2020).

Many previous studies have suggested an influence of prior

Arctic SIC anomalies, in particular over the Barents–Kara

(BK), Greenland, and Labrador Seas, on the observed atmo-

spheric circulation in the following winter. For example, using

lagged regression analysis to distinguish cause and effect,

Honda et al. (2009) found that SIC anomalies averaged along

the Siberian coast were followed by significant near-surface

cooling in Eurasia. This circulation feature was associated with

an intensified Siberian high and a negative NAO. Using lagged

maximum covariance analysis (MCA) to separate the atmo-

sphere driving sea ice (the stronger signal) from sea ice driving

the atmosphere (a weaker signal), Frankignoul et al. (2014)

found that an NAO-driven sea ice seesaw between the

Greenland–BK Seas and the Labrador Sea was influencing the

NAO later in the season, in addition to an Aleutian–Icelandic

low seesaw-like response to SIC changes in the Bering and

Okhotsk Seas. Both signals seemed to be primarily driven

by SIC anomalies rather than by concomitant SST anomalies.

Lagged MCA was also used in García-Serrano et al. (2015) to

show that a BK SIC reduction in November was followed by a

significant negative NAO signal in winter via a stratospheric

pathway, broadly similar to other studies using lagged regres-

sions (King et al. 2016; Nakamura et al. 2016; Yang et al. 2016;

Koenigk et al. 2016). On the other hand, Blackport et al.

(2019), using the turbulent heat flux to infer causality, found

only minimal influence of sea ice fluctuations on the midlati-

tude wintertime circulation at a one-month lag.
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Interannual SIC fluctuations are often synchronous with

significant anomalies associated with other forcing agents. The

snow cover, for example, may enhance (e.g., Furtado et al.

2016) or even dominate the SIC link with lagged atmospheric

circulation (e.g., Gastineau et al. 2017). Ural blocking during

boreal autumn can increase upward planetary wave propaga-

tion into the stratosphere, which weakens the stratospheric

polar vortex and affects the atmospheric circulation in the

following winter (Garfinkel et al. 2010). Peings (2019) argued

that, as Ural blocking also affects the BK SIC (e.g., Chen et al.

2018; Gong and Luo 2017; Luo et al. 2017), Ural blocking–

induced variability in autumn BK SIC and later atmospheric

circulation could be incorrectly interpreted as a BK SIC im-

pact on the atmospheric circulation. Other studies argued that,

as the atmospheric variability can drive SIC variations at mul-

tiple time scales, causality is questionable (e.g., Sorokina et al.

2016; Blackport et al. 2019; Peings 2019; Screen and Blackport

2019; Zappa et al. 2021). In addition, the sea ice–atmospheric

circulation linkage presents nonstationarity and intermittency

(Kolstad and Screen 2019; Siew et al. 2020). This suggests that

the influence of SIC variability on the atmospheric circulation

needs to be further clarified.

At least two empirical approaches have been used to address

the effects of the confounding factors and the issue of causality.

The first one is using causal effect networks to provide clear

causal directions across each component of variability. For

instance, Kretschmer et al. (2016) found that a low autumn BK

SIC was an important driver of the winter negative AO re-

sponse via tropospheric mechanisms, while Eurasian snow

cover had no clear link with the AO, but Siew et al. (2020)

found that the SIC influence is intermittent and often occurred

through a stratospheric pathway. The second approach, adopted

in this study, is using multiple lag regressions to statistically

separate contributions from each driver (e.g., Gastineau et al.

2017; Simon et al. 2020). As some studies have investigated the

possibility that GCMs could underestimate the SIC-driven

variability in the atmosphere (e.g., Honda et al. 2009; Mori

et al. 2014, 2019a,b), while other indicated that the simple

statistical relationships in observations overestimate the con-

nections (e.g., Blackport and Screen 2021), it is also of much

interest to establish with carefully designed experimental de-

signs whether or not the interannual relationship between SIC

and lagged atmospheric circulation can be adequately simu-

lated and singled out in AGCMs and CGCMs.

In this study, we use a coordinated set of multimodel his-

torical AGCM simulations performed in the Blue-Action Project

(http://blueaction.eu/) in order to enhance our understanding

on the SIC impacts and address the causality issues. These

experiments were designed to single out the influence of the

Arctic sea ice variations on the atmospheric circulation during

the 1979–2014 period, following a protocol developed by the

Blue-Action Project, which is similar to that used by Perlwitz

et al. (2015) and Sun et al. (2016), and recommended by Smith

et al. (2019). Nine state-of-the-art AGCMs were used, each con-

tributing 10–30 members for a total of 165 multimodel his-

torical simulations (see Liang et al. 2020). This larger AGCM

dataset than previously available is used in this study to in-

vestigate the impacts of observed Arctic sea ice variability,

including long-term trends and interannual variability, with

a focus on the cold season (from October to the following

March) of the Northern Hemisphere. The manuscript is or-

ganized as follows. Datasets and analysis methods are de-

scribed in section 2. A series of comparisons between observed

and simulated trends and their link to Arctic sea ice loss are

presented in section 3. Covariability between Arctic SIC and

lagged atmospheric circulation with the effects of confounding

factors addressed is discussed in section 4 to inform the capa-

bility of AGCMs in simulating observed lagged relationships at

interannual time scales. We summarize and discuss the results

in section 5.

2. Datasets and methods

a. Coordinated multimodel AGCM experiments

This study uses nine AGCMs, listed in Table 1, to conduct

two sets of large-ensemble experiments during 1979–2014

following a protocol developed by the H2020 Blue-Action

Project. The first set of experiments is forced with daily time-

varying global SST, SIC, and CMIP6 radiative forcings (see the

seventh column in Table 1; Eyring et al. 2016; Haarsma et al.

2016) to include the effects of all observed forcings on the

atmospheric circulation. These experiments are AMIP-type

simulations. We call this set of experiments ALL to reflect that

it uses all observed forcings. The second set is identical to ALL

except that the daily time-varying SIC field for the Northern

Hemisphere is replaced by its daily climatological (1979–2014

average) values. We call this set of experiments SICclim to de-

note its Arctic sea ice forcing is replaced by climatological

values. The atmospheric circulation in SICclim, therefore, is not

directly affected by Arctic sea ice variability, and the atmo-

spheric circulation response to Arctic sea ice variability can

be estimated from the multimodel ensemble mean (MMEM)

of ALL members minus the MMEM of SICclim members

(SI MMEM hereafter), assuming additivity between the SIC-

driven changes and that driven by other forcings. All fields

are regridded to 1.258 (longitude)3 0.948 (latitude) horizontal
resolution before further analysis.

The SST and SIC boundary conditions used to force the

AGCMs during the 1979–2014 period are obtained from the

Met Office Hadley Centre Sea Ice and SST version 2.2.0.0

dataset (Kennedy et al. 2017), which was also used in the

CMIP6 HighResMIP protocol (Haarsma et al. 2016). To make

sure that the SST and SIC fields evolve consistently in SICclim

and any unphysical SST or SIC values are removed, most

modeling groups performed an adjustment following Hurrell

et al. (2008), although its impacts on the atmospheric responses

are quite small [see section 2.1 of Liang et al. (2020) for discus-

sion]. Table 1 specifies whether this adjustment was implemented.

To minimize the effects of internal atmospheric variability,

each modeling group has conducted ensembles of 10–30 mem-

bers that differ only in their initial conditions for each model,

resulting in a total of 165 members (Table 1). Because the

EC-Earth3-NLeSCmodel only provides variables at the surface,

500-hPa, and 100-hPa levels due to their storage limitations, we

do not include the EC-Earth3-NLeSC 10-member results in the
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analyses at other levels or for vertical profiles. In other words,

only 155 members are used in those analyses. How many mem-

bers are used is specified in each figure caption. It is also noted that

not every modeling group strictly followed all the protocol re-

quirements (see Table 1). However, such departures are not ex-

pected to impact the results in any significantway [see comparison

and discussion in Liang et al. (2020)]. We take MMEM over

165 members to reduce the effect of internal atmospheric

variability (e.g., Deser et al. 2020) without applying any specific

weight for eachmember of differentmodelswhen takingMMEM.

b. Reanalysis datasets

In comparison to the simulated results, this study also uses

reanalysis datasets. Sea level pressure, air temperature, geo-

potential height, and atmospheric zonal wind fields from the

latest European Centre forMedium-RangeWeather Forecasts

reanalysis (ERA5) during 1979–2014 (Hersbach et al. 2020).

To test robustness, we also analyzed four other reanalysis

products: ERA-Interim (Dee et al. 2011), Japanese 55-Year

Reanalysis (Kobayashi et al. 2015), Modern-Era Retrospective

analysis for Research and Applications version 2 (Gelaro et al.

2017), and National Center for Atmospheric Research–

Department of Energy Atmospheric Model Intercomparison

Project (AMIP-II) reanalysis (Kanamitsu et al. 2002). As we

find very similar results, we only present the ERA5 results, al-

though a global mean cold bias is present in the lower strato-

sphere from 2000 to 2006 in the ERA5 temperature (Simmons

et al. 2020). Weekly Northern Hemisphere continental snow

cover extent (SCE) from 1979 to 2017 is obtained from the

Rutgers University Global Snow Laboratory (Estilow et al.

2015) and aggregated into monthly data.

c. Trend analysis

The linear trends during 1979–2014 are calculated by a least

squares fit of the linear regression yi 5 a 1 bti, where yi is the

variable of interest and ti is time. Their statistical significance is

determined by a two-sided Student’s t test with a null hypothesis

that the slope b is zero. When the corresponding p value is less

than 0.05, we consider that the trend is significant at the 5%

significance level. The 95% confidence interval of the estimated

trend bb in one single realization (e.g., ERA5) is given by

0
BB@bb2 t110:95

2 3bsEffiffiffi
S

p , bb1 t110:95
2 3bsEffiffiffi
S

p

1
CCA, (1)

where t(110:95)/2 is the (1 1 0.95)/2 quantile of the t distribution

with degree of freedom n 2 2, csE is the residual standard de-

viation, and S is the root-mean-square difference of the time ti
from the time mean. A thorough derivation can be found in

section 8.3.7 of von Storch and Zwiers (1999).

For simulated fields, we present the trends of MMEM, ex-

cept for the histograms of the individual member trends (as

explicitly noted in the figure captions). Note that the MMEM

trends are likely more significant than their observational

counterparts, because the influence of internal atmospheric

variability is minimized in the former, while often dominatingT
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in the latter. Note that we consider linear trends because they

are more easily comparable between datasets than quadratic

trends, even though the latter may slightly better represent

Arctic sea ice loss (e.g., Dirkson et al. 2017). In the spatial maps

of trends, statistical significance may be overestimated if sim-

ply based on statistical tests at each grid point (hereafter ‘‘lo-

cal’’ significance; e.g., Livezey and Chen 1983; Wilks 2016).

The ‘‘field significance’’ approach (Wilks 2016), which con-

strains the false discovery rate (FDR) of the regression esti-

mates, is used to address this issue. We choose aFDR 5 0.1 to

achieve a global test level aGlobal 5 0.05, assuming a spatial

decorrelation scale of ;1.54 3 103 km, as estimated by the

spatial autocorrelation of the Northern Hemisphere geo-

potential height field at 500 hPa in Polyak (1996) [see Fig. 4 in

Wilks (2016)]. In the figures presented in this study, we use

black stippling to denote that the trend has field significance,

and use cyan stippling (or contour line) to indicate that the

trend is 5% significant locally.

d. Maximum covariance analysis

We use maximum covariance analysis (MCA) to examine

the lagged atmospheric circulation response to Arctic SIC

variability at interannual time scale. MCA applies singular

value decomposition (Bretherton et al. 1992) on the covariance

matrix of any two fields and retrieves modes of covariability

characterized by corresponding spatial patterns and associated

time series. Here the covariance matrix is calculated using

area-weighting for both SIC and SLP fields. We apply the

MCA approach of García-Serrano et al. (2017) to SIC and sea

level pressure (SLP) anomaly fields and investigate the leading

modes of covariability when SIC leads by 1–6 months. The

spatial SIC patterns are obtained by regressions on the SIC

time series normalized by its standard deviation (i.e., homo-

geneous covariance map), and the SLP patterns by regression

on the same SIC time series (i.e., heterogeneous covariance

map). Using the heterogeneous maps for SLP avoids the lim-

itations pointed out by Zappa et al. (2021), while preserving

orthogonality (Czaja and Frankignoul 2002).

For ERA5 or individual AGCM members, we obtain the

monthly SIC and SLP anomalies by subtracting their climato-

logical monthly mean for the 1979–2014 period and then re-

move quadratic trends in order to reduce long-term variations.

Here we remove the quadratic trend because the Arctic sea ice

loss in Northern Hemisphere autumn and winter in the past

decades shows an accelerating rate, which is closer to a qua-

dratic structure [see Dirkson et al. (2017) and Liang et al.

(2020) for discussions], although some MCA analyses have

shown that results are similar when removing instead a linear

or cubic trend (García-Serrano et al. 2017). For MCA using

AGCM MMEM results, the same steps are applied to the

MMEM SLP to obtain MMEM SLP anomalies.

Each MCA mode is characterized by its squared covariance

(SC; the corresponding squared singular value of the covari-

ance matrix), a correlation coefficient (R) between the two

MCA time series, and a squared covariance fraction (SCF;

the percentage of explained squared covariance). SCF is in-

trinsically the same measure as SC, so we only discuss SC. To

assess the significance of SC and R, we repeat MCAs with 100

random permutations in time dimension for SLP to obtain 100

realizations of SC and R reflecting the effect of internal vari-

ability as in previous studies (e.g., Gastineau et al. 2017). The

number of SC andR values that are larger than target SC andR

values provides an estimate of their level of significance.

e. Indices

In section 4, the Siberian snow index used is defined as the

SCE time series of the leadingMCAmode between November

(December) SCE anomalies over northern Eurasia (08–1808
and 408–658N) and December (February) SLP anomalies over

the North Atlantic–Eurasian domain (908W–408E, 208–908N),

following Gastineau et al. (2017). The North Atlantic SST in-

dex is similarly defined as the SST time series of the leading

MCA mode between SST anomalies over the North Atlantic

(908W–08, 108S–608N) and subsequent SLP anomalies over

the North Atlantic–Eurasian domain (908W–408E, 208–908N),

which characterize the North Atlantic horseshoe (tripolar)

SST pattern (Czaja and Frankignoul 1999, 2002).We define the

Ural blocking index with two metrics: 1) the number of days

with blocking occurring in the Ural sector (08–808E and 408–
758N) during the 1979–2014 period based on the blocking

definition by Scherrer et al. (2006), and 2) the area-averaged

Z500 anomalies over the eastern Europe and Ural sectors

(108W–808E, 458–808N) following Peings (2019). It is noted that

the thresholds in determining Ural blocking events for metric 1

and differences in geographic domain between the two metrics

may result in a discrepancy in the blocking time series based on

the two metrics. In section 4, we mainly show results using

metric 1, but also used metric 2 for comparison (shown later in

Fig. 13). The NAO index used in section 4 is obtained from

NOAA Climate Prediction Center based on the rotated EOF

method (Barnston and Livezey 1987).

f. Multiple regression analysis

To quantify relative importance of potential confounding

factors on wintertime atmospheric circulation using the indices

abovementioned, we usemultivariate least squares regressions

in section 4 as in previous studies (e.g., Gastineau et al. 2017;

Simon et al. 2020). We address the multicollinearity with the

variance inflation factor (VIF; Kendall 1946). The VIFs in our

cases are at most 1.7, much smaller than 5, which is generally

considered a sign of severemulticollinearity (Judge et al. 1988).

The level of statistical significance is tested with 100 random

permutations of the atmospheric fields in time. The number

regression slope that exceeds the observed value in the per-

muted samples provides the p value.We do not test all lead–lag

relationships across all variables but only focus on specific timing

and variables with possible physical linkages, including Eurasian

SCE (Gastineau et al. 2017), North Atlantic SST (Czaja and

Frankignoul 2002), and Ural blocking (Peings 2019).

3. Long-term linear trends during the 1979–2014 period

a. Observed and simulated trends

As the accelerated Arctic warming is the dominant feature

of the Arctic sea ice decline in the past few decades, we first
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analyze the linear trend of air temperatureT averaged over the

polar cap domain (658–908N) during 1979–2014. The monthly

evolution of the polar-cap T trends reveals warming trends in

the lower troposphere in every month with the strongest trends

from autumn to early spring in both ERA5 and ALL MMEM

(Figs. 1a,b). However, there are some differences. In April, a

strong warming trend in lower troposphere occurs in ERA5,

which is not seen in ALL MMEM, and from January to April

large differences occur in middle and higher troposphere and

stratosphere. The T trends associated with the Arctic sea ice

loss are derived from SI MMEM T and they show the largest

warming patches in October–December (OND) and January–

March (JFM) (Fig. 1c). The OND warming trends are mostly

confined below the 850-hPa level, while the JFM warming

trends reach the middle troposphere up to the 500-hPa level.

There is also a signal in the stratosphere, albeit not field sig-

nificant. These results suggest that the Arctic sea ice changes

explain more than half of the simulated and observed near-

surface temperature trends in the polar cap during boreal fall

and winter. Thus, we focus on the OND and JFMmeans in the

following trend analyses.

We next compare the ERA5 OND and JFM surface air

temperature (SAT) trends in the Northern Hemisphere

domain (208–908N) with the corresponding trends of ALL

MMEM during 1979–2014. Consistent large warming trends in

ERA5 and ALLMMEM SAT are found in the Arctic Siberian

sector and BK Seas in OND (Figs. 2a,c) and in the BK,

Labrador, and Okhotsk Seas in JFM (Figs. 2b,d), where large

sea ice decline occurs (e.g., Onarheim et al. 2018). Furthermore,

the trends of Arctic-averaged SAT from ERA5 and ALL

MMEM (magenta and black vertical lines in Figs. 2e,f) exhibit

similar amplitudes and are both significant at the 5% level,

indicating a robust warming trend. We note that the width

of 95% confidence intervals for the trends of ALL MMEM

(0.035Kyr21 for OND and 0.034Kyr21 for JFM; magenta shad-

ings in Figs. 2e,f) are smaller than those of ERA5 (0.058Kyr21

for OND and 0.065K yr21 for JFM), but not as much as ex-

pected from the reduced contribution of internal atmospheric

variability in MMEMs, showing that other uncertainty con-

tributes to the spread, such as the model (and/or scenario)

uncertainty (e.g., Lehner et al. 2020). We calculate the OND

and JFM trends of Arctic-averaged SAT from each ALL

member (bars in Figs. 2e,f) and obtain a Gaussian-like dis-

tribution of SAT trends, whose spread mostly overlaps with

the 95% confidence intervals of the ERA5 SAT trends (gray

shadings in Figs. 2e,f), except for the largest positive values.

The contribution of model uncertainty can be estimated by

comparing the full range of SAT trend among the 165 ALL

FIG. 1. (a) Linear trends of ERA5 Arctic-averaged (658–908N) air temperature in each month. (b),(c) As in (a), but for ALL MMEM

and SI MMEM, respectively. The black contour lines in (a) represent climatological (1979–2014) Arctic-averaged ERA5 air temperature

values (K), and in (b) and (c) climatological (1979–2014) Arctic-averaged ALL air temperature values (K). The black dots indicate field

significance, while the cyan dots local significance at 5% level. The ticks on the x axis indicate the middle of the month.
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members (0.068K yr21 for OND and 0.097K yr21 for JFM)

with the range of estimated model internal variability

(0.044K yr21 for OND and 0.074K yr21 for JFM), as obtained

from 165-member trends after removing each corresponding

model ensemble-mean trend. In the sense of explained por-

tion of uncertainty [i.e., 1 2 (internal variability/model

uncertainty)2 3 100%], we can estimate the fraction of

model uncertainty for OND SAT to be about 58%—that is,

[1 2 (0.044/0.068)2] 3 100%—and that for JFM SAT about

42%, that is, [1 2 (0.074/0.097)2] 3 100%.

Outside the Arctic, the ERA5 SAT trend patterns in the

North Pacific and Atlantic sectors are mostly significant and

realistically simulated by ALL MMEM, as expected from

prescribed SSTs. Over the continents, ALL MMEM indicates

a weak, but statistically significant warming trend, except in the

northwestern United States and western Canada (Figs. 2c,d).

In contrast, the trends over the continents in ERA5 are mostly

not statistically significant (Figs. 2a,b), thus precluding a direct

comparison between ALLMMEM and ERA5. Nonetheless, it

should be noted that the warming trends in ERA5 are significant

in a few continental regions, such as southern Europe, southeast

Asia, and the southern United States and northern Mexico.

The same analysis is performed on the ERA5 and ALL

MMEM SLP fields to examine the trends in near-surface at-

mospheric circulation (Figs. 3a–d). The comparison is difficult

because the ERA5 SLP trends are mostly not significant,

except locally for the positive trends over part of the North

Pacific that are likely due to SST changes. The ALL MMEM

SLP trends are not significant in JFM, but in OND SLP trends

are significantly negative over much of Eurasia and the Arctic,

and positive over the eastern North Pacific and northwestern

North America. The OND and JFM trends of the Arctic-

averaged SLP from each member of ALL present Gaussian-

like distributions with the trends centering around zero,

although the decreasing MMEM trend in OND is significant

at the 5% level (Figs. 3e,f). Their spread (the range of vertical

bars) is similar to the 95% confidence interval of the ERA5

SLP trends (the gray shading). The model uncertainties con-

tribute little in OND and even less in JFM, as the ranges of

estimated model internal variability (0.20 hPa yr21 for OND

FIG. 2. ERA5 SAT linear trends in (a) OND and (b) JFM. (c),(d) As in (a) and (b), but for the SAT trends of ALL MMEM (165

members). In (a)–(d), the cyan contour lines indicate the 5% local significance level, while the black dots indicate the field significance.

(e) The bars indicate the histogram of trends of OND Arctic (or polar cap, 658–908N)-averaged SAT from individual members of ALL.

The yellow bar means that the trends are significant at 5% level, while the blue bar indicates that the trends are not significant. The

magenta vertical line indicates the trend of OND Arctic-averaged SAT from ALL MMEM, while the vertical black line is the ERA5

trends. Use of solid vertical lines for these trends indicates that the trends are significant at 5% level. The gray and magenta shadings

denote the 95% trend confidence intervals of the trends of ERA5 and ALL MMEM Arctic-averaged SATs. (f) As in (e), but for JFM

SAT trends.
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and 0.28 hPa yr21 for JFM) largely accounts for the full ranges

of ALL members (0.23 hPa yr21 for OND and 0.29 hPa yr21

for JFM). We can estimate the fraction of model uncertainty

for OND SLP to be about 24%—that is, [1 2 (0.20/0.23)2] 3
100%—and that for JFM SLP about 7%, that is, [1 2
(0.28/0.29)2] 3 100%. The results indicate that, in single

model simulations and in ERA5, the forced SLP trends within

the Arctic are masked out by the internal atmospheric vari-

ability and too weak to be detected.

We also investigated the trends in the NAO, using for NAO

index based on the difference between area-averaged SLP

anomalies in the Azores (288–208W, 368–408N; southern red

box in Figs. S1c,d in the online supplemental material) and

Icelandic (258–168W, 638–708N; northern red box in Figs. S1c,d)

regions after removing the time means (Smith et al. 2020).

There is no significant NAO trend in ERA5 or in the MMEM,

and the trend distribution shows a spread similar to that of

Arctic-averaged SLP trends (Figs. S1e,f).

In the lower stratosphere, the trends of the ERA5 geo-

potential height at 50 hPa (Z50 hereafter) are not significant,

except locally in OND above the British Isles and in JFM over

central Eurasia (Figs. 4a,b). On the other hand, there is a

positive trend in most regions of the Northern Hemisphere

domain in the ALL MMEM in both OND and JFM, with

large amplitudes over the northern North Atlantic (Figs. 4c,d).

TheONDand JFMArctic-averaged trends of eachALLmember

again showGaussian-like distributions, and the spreads are largely

comparable to the 95% confidence intervals of ERA5 (Figs. 4e,f).

Again, the contribution of model uncertainties is small as the full

ranges of ALL members (6.94myr21 for OND and 12.97myr21

for JFM) is only barely larger than that due to internal variability

(6.14myr21 for OND and 12.03myr21 for JFM).

We finally examine the zonal-mean T trends considering

height–latitude distributions (Fig. 5). Both ERA5 and ALL

MMEM T have significant warming trends in the troposphere

and cooling in the extrapolar stratosphere, which are expected

features of global warming. In much of the troposphere be-

tween 208 and 608N, the trends of ALLMMEM T are stronger

than those of ERA5. The strongest lower-troposphere warm-

ing in the high latitudes is the signature of Arctic amplification

(e.g., Lee et al. 2008; Alder et al. 2011; Deser et al. 2015, 2016b).

It is noted that the Arctic warming trends in our simulations are

closer to those of ERA5 than the warming trends presented in

Cohen et al. (2020), in which the warming center is slightly

displaced southward (see their Fig. 1c), perhaps because of

significantly fewer ensemble members. However, the AGCM

version and forcing applied also differ, which may also ex-

plain the discrepancies.

In summary, the temperature trends of ERA5 and ALL

MMEM, which result from the combined influence of SIC,

FIG. 3. As in Fig. 2, but for SLP. In (e) and (f), use of solid (dashed) vertical lines indicates that the trends are (are not) significant at

5% level.
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SST, and radiative forcings, show overall consistent features, in

particular at high latitudes in the lower troposphere (Figs. 1, 2,

and 5). In contrast, the consistency of the trends for the dy-

namical variables between ERA5 and ALL cannot be readily

assessed because the effects of internal atmospheric variability

dominate in ERA5.

b. Arctic sea ice influence on trends

Assuming that the atmospheric circulation response to

Arctic sea ice variability is sufficiently additive, SI MMEM

should best represent the response to Arctic sea ice changes,

including trends and variability at interannual and longer time

scales. In this section, we quantify the influence of Arctic sea

ice loss on the long-term trends.

Figures 6 and 7 show the trends of SI MMEM for SAT,

SLP, geopotential height at 500-hPa level (Z500 hereafter),

and zonal wind at 850-hPa level (U850 hereafter) in OND and

JFM, respectively. Strong SAT warming trends in OND and

JFM appear in regions of large Arctic sea ice edge retreat

and newly openwaters, including the Labrador, Greenland, BK,

East Siberian–Chukchi, and Okhotsk Seas (Figs. 6a and 7a).

The similarity with the trends in Figs. 2a–d suggests that ERA5

and ALL MMEM warming trends in the Arctic are mostly

driven by sea ice changes. In both seasons, the warming trends

due to sea ice loss extend over northern Eurasia and North

America, but their magnitude is small, thus contributing little

to the continental warming trends in ALLMMEM. Consistent

with the strong warming trends near the sea ice edge, there are

strong negative SLP trends (Figs. 6b and 7b), likely as a result

of the near-surface atmospheric circulation response to local

heating that was also shown in previous modeling studies (e.g.,

Peings and Magnusdottir 2014; Deser et al. 2010).

Away from the local SLP response to the strong SAT

warming near the sea ice edges, there is no field significant SLP

trend in OND, except for a small decrease in northeastern

North America and northwestern Asia, and only locally

significant trends in Z500 or U850 (Figs. 6b–d). Conversely,

there is a field significant dynamical large-scale response to

Arctic sea ice loss in JFM, best seen in Z500 (Fig. 7c). The

trend has a negative AO-like pattern, particularly strong in

the North Atlantic sector, with significant increasing trends

over theNordic seas, Greenland, northeastAsia, and northwestern

NorthAmerica, andadecreasing trendover southeasternAmerica,

western Europe, and the central Pacific. Correspondingly, the

U850 trends present a north–south dipolar structure (color

shadings in Fig. 7d) that tends to shift the climatological

Atlantic and Pacific jet (black contours in Fig. 7d) equator-

ward. The lower tropospheric zonal wind also decreases over

northern Siberia. Note that the signature of the negative AO-like

pattern also appears in the JFM SLP trends, but is masked by

FIG. 4. As in Fig. 2, but for geopotential height at 50 hPa (Z50). It is noted that only 155 members are used in Z50ALLMMEM. In (e) and

(f), use of solid (dashed) vertical lines indicates that the trends are (are not) significant at 5% level.
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the local warming near the regions of sea ice retreat (Fig. 7b).

To quantify the trend uncertainties in SI MMEM, we further

calculate the SLP, Z500, and U850 trends averaged over North

Atlantic–northern Europe regions (red boxes in Figs. 7b–d)

where the changes are statistically significant. The SLP and Z500

increase at rates of 0.0216 0.018 hPa yr21 and 0.376 0.20myr21,

respectively, whereas U850 decreases at a rate of 20.015 6
0.011ms21 yr21, where the 95% confidence intervals are indi-

cated. These trends are small, however, implying a change of

0.76 6 0.65 hPa, 13.3 6 7.2m, and 0.54 6 0.40m, respectively,

during the 36-yr period. Similarly, the JFM NAO index, as de-

fined above, only decreases at a rate of20.0146 0.031 hPa yr21

(20.44 6 0.34myr21 for the Z500 NAO index). In the strato-

sphere, there is no significant trend in OND (Figs. 8a,c), but sea

ice loss induces a small weakening of the polar vortex in JFM,

which is field significant over northeastern North America, as

illustrated at 50hPa (Figs. 8b,d). Hence, these trends confirm

that the Arctic sea ice decline affects, albeit weakly, the midlati-

tude atmospheric circulation in boreal winter.

The trends of zonally averaged T and zonal velocity com-

ponent U in height–latitude space confirm that the JFM near-

surface warming trends in high latitudes extend upward into

the stratosphere (Fig. 9b) and are consistent with negative U

trends centered around 608N (Fig. 8d). This is likely as a result

FIG. 5. Zonally averaged air temperature trends from 1000 to 10 hPa. The black contour lines represent the

corresponding climatological (1979–2014) zonally averaged air temperature (K) from (a),(b) ERA5 and (c),(d)

ALL MMEM. The black dots indicate field significance, while cyan dots 5% local significance.
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of thermal wind adjustment and the associated eddy-driven

response (e.g., Chemke et al. 2019; England et al. 2020; Hell

et al. 2020). Altogether, these features indicate a negative

tropospheric (Fig. 7c) and stratospheric (Fig. 8b) AO pattern.

In lower latitudes, positiveU trends occur around 308N in JFM

(Fig. 9d), which corresponds to an intensification of the sub-

tropical jet core. This may be caused by changes in the atmo-

spheric meridional overturning circulation induced by the

Arctic warming and subsequent modulations onT trends in the

lower latitudes (e.g., Deser et al. 2016b; Chemke et al. 2019;

England et al. 2020; Hell et al. 2020; He et al. 2020). In contrast,

inOND the warmingT trends are confined to the high latitudes

below the 800-hPa level (Fig. 9a), while there is a small cooling

trend in the lower latitudes, as well as in the high-latitude

stratosphere. However, these trends are weak and lead to very

little change in the zonal wind (Fig. 9c).

In summary, the SI MMEM results indicate that Arctic sea

ice loss robustly contributed to the Arctic warming over the

1979–2014 period, extending to the 500-hPa level and the

stratosphere during JFM. In this season, there is also a weak

trend resembling a weak negative AO-like pattern, with a

small southward shift of the midlatitude jet stream and a

slowdown of the stratospheric circulation. In OND, however,

there is no significant dynamical response to the sea ice loss.

FIG. 6. OND trends from SIMMEM for (a) SAT, (b) SLP, (c) geopotential height at 500-hPa

level (Z500), and (d) zonal wind at 850-hPa level (U850). The cyan contour lines indicate the

5% local significance level, while the black dots denote the field significance. The black contour

lines in (d) represent climatological (1979–2014) ONDALLMMEMU850 (inm s21). The 165

members are used in (a) and (b), while 155 members are used in (c) and (d).
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These responses are not retrieved in ALLMMEM (Figs. 2 and

3), indicating that they are masked out by other forcing

agents (e.g., SST).

4. Interannual variability during 1979–2014

In this section, we use MCA to examine the relationships

between Arctic sea ice and lagged atmospheric circulation

fluctuations with a focus on interannual (year-to-year) vari-

ability. Following observational evidence (e.g., García-Serrano
et al. 2015, 2017), we primarily consider the North Atlantic–

Eurasian domain (308W–1208E, 508–908N for SIC; 908W–408E,
208–908N for SLP). Note that using the Northern Hemisphere

domain (208–908N) for SLP in MCA gives similar results with

less statistical significance as expected from the inclusion of

unrelated remote signals in the SLP fields (Figs. S2–S4). SIC

fluctuations are largely driven by the atmosphere on the

monthly time scale (e.g., Frankignoul et al. 2014; Blackport

et al. 2019) and, as for the case of SST anomalies (e.g., Czaja

and Frankignoul 2002; Wills and Thompson 2018), simulta-

neous correlations generally reflect the atmospheric forcing of

the SIC anomalies. To exclude the atmospheric forcing, we

only examine the MCA when the atmospheric anomalies lag

the SIC anomalies. In view of the short time scale of the natural

atmospheric variability at sea level and in the midtroposphere

(negligible month-to-month persistence), lags of a month and

longer could better separate a possible atmospheric response

to changes in the surface conditions including SIC, SST, and

SCE from the direct atmospheric forcing of these changes, as in

numerous studies of SIC (or SST) influence on the atmospheric

FIG. 7. As in Fig. 6, but for JFM. The red boxes outline the region 08–208E, 608–708N in (b),

308W–208E, 608–758N in (c), and 308W–208E, 508–658N in (d).
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circulation (e.g., Frankignoul et al. 2014; King et al. 2016;

Nakamura et al. 2016; Yang et al. 2016; Koenigk et al. 2016;

García-Serrano et al. 2015, 2017). To further isolate the impact

of SIC from that of other surface conditions, an apparent SIC

impact, which might actually reflect the influence of concomi-

tant SST, SCE or stratospheric fluctuations, should be sepa-

rately quantified. Hence, possible confounding factors are also

examined.

Figures 10a and 10b show SC and R of the first MCA mode

for ERA5 at varying lagged months from October to March.

The most significant MCA mode is for November SIC and

December SLP, with significant SC at 1% level and R at 8%

level. The November SIC spatial pattern presents a large SIC

reduction in the BK Seas (Fig. 10c), and the SLP anomalies one

month later have a negative NAO-like pattern in the North

Atlantic sector (Fig. 10d). This result is consistent with the

analyses by García-Serrano et al. (2017). SC is also 2% sig-

nificant when theOctober SIC anomalies lead the January SLP

anomalies, albeit with slightly less significant R but similar

patterns. Performing theMCAwith Z500 anomalies instead of

SLP anomalies gives very similar results and indicates that the

December atmospheric circulation anomalies are largely bar-

otropic in the North Atlantic sector. The signal extends to the

stratosphere where it resembles a negative AO (highly signif-

icant at 50 hPa; not shown). However, Gastineau et al. (2017)

found that a concomitant Siberian SCE increase in November

(likely synchronously driven by the same atmospheric fluctu-

ations that drove the SIC anomalies) also precedes a similar

negative NAO-like signal. The link with SCE is twice stronger

than with SIC, while November Ural blocking may have

FIG. 8. OND trends from SI MMEM for (a) geopotential height at the 50-hPa level (Z50),

(c) zonal wind at the 50-hPa level (U50). (b),(d) As in (a) and (c), but for JFM Z50 and U50

trends respectively. The cyan contour lines indicate the 5% local significance level, while the

black dots denote the field significance. All 155 members are used.
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negligible impact on these lag relations (theirFig. 13). Furthermore,

Czaja and Frankignoul (2002) showed that a North Atlantic

horseshoe pattern is also driving the NAO in early winter

[November–January (NDJ)]. Hence, our MCA between

November SIC and December SLP may be influenced by these

confounding factors. Regressing the November global Z500,

SST and SCE anomalies onto the November SIC MCA time

series illustrate concomitant signals and shows that an eastern

European Z500 increase, Siberian SCE increase, and a sig-

nificant cooling in the subtropical North Atlantic may have

indeed contributed to the relation between November SIC

and December SLP (Figs. 11a,b). To estimate relative con-

tributions, a multiple regression was performed using four re-

gressors: the November SIC MCA time series, the November

Siberian SCE index, the November North Atlantic SST in-

dex, and, for completeness, the November Ural blocking

index. Collinearity is very limited, with a VIF of 1.3 at most.

The results (not shown) indicate that although SIC still

leads a significant negative NAO-like signal, its amplitude

is about 3 times smaller than in Fig. 10d, which is domi-

nated by the combined influence of Siberian SCE and North

Atlantic SST.

FIG. 9. The trends of SI MMEM (155 members) zonally averaged air temperature in (a) OND and (b) JFM.

(c),(d) As in (a) and (b), but for zonally averaged zonal winds. The black contour lines represent the corre-

sponding climatological mean (1979–2014). The black dots indicate field significance, while the cyan dots 5%

local significance.

8432 JOURNAL OF CL IMATE VOLUME 34

Brought to you by MAX-PLANCK-INSTITUTE FOR METEOROLOGY | Unauthenticated | Downloaded 10/21/21 07:50 AM UTC



Figure 10 also shows that there is a strong 2% significant SC

when the December SIC anomalies lead the February SLP

anomalies, althoughR is only 26% significant. ThisMCAmode

shows that a SIC decrease in the Barents and Greenland Seas

precedes the occurrence of a negative NAO-like pattern

(Fig. 10e). The mode is also equivalent barotropic in the tro-

posphere (but insignificant in the stratosphere), with similar

statistical significance when based on Z500 anomalies. This mode

was discussed by García-Serrano and Frankignoul (2016), who

mentioned that the NAO-like response may also be affected

by a concomitant North Atlantic SST tripolar anomaly, which

is seen in the SST regression map (Fig. 11d). Figure 11d also

shows that the December SIC decrease is accompanied by a

SCE increase in central Asia and decrease in central Europe,

which were found by Gastineau et al. (2017) to have a weakly

significant link with the February atmospheric circulation. A

concomitant statistically significant Z500 signal is also found in

the Ural blocking region (Fig. 11c), suggesting that December

FIG. 10. (a) The squared covariance (SC) of the first MCA mode of covariability between observed SIC and

lagged ERA5 SLP fromOctober to followingMarch (shading). The number indicates how many SCs generated by

random SLP chronology permutation for 100 times are larger than the SC obtained from the original SIC fields

without permutation (see section 2d). If the number is smaller than 10, indicating the 10% significance level, we

label it with an asterisk (*). (b)As in (a), but for the correlation coefficients betweenMCASIC and SLP time series.

(c) November SIC anomalies regressed onto normalized November SIC time series obtained by MCA on

November SIC–December SLP fields (i.e., heterogeneous SLP pattern). (d) December SLP anomalies regressed

onto normalized November SIC time series obtained by MCA on November SIC–December SLP fields (i.e., ho-

mogeneous SIC pattern). (e),(f) As in (c) and (d), but for December SIC and February SLP anomalies regressed

onto normalized December SIC time series obtained by MCA on December SIC–February SLP fields. The cyan

and magenta contour lines in (c)–(f) indicate 5% local significance level and field significance, respectively. The

green box in (d) delineates the region 608–708N, 308W–08.
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Ural blockingmay be another confounding factor in analogy to

the results that Peings (2019) suggested for November Ural

blocking. To investigate the impacts of these possible con-

founding factors, we have performed amultiple regression with

four predictors, the December SIC MCA PC1, the December

SCE index, the North Atlantic SST index, and the December

Ural blocking index. The collinearity is again limited (VIF of

1.7 at most). Although each regressor precedes a significant

February SLP signal in the North Atlantic–Europe sector with

substantial amplitude, the patterns differ (Fig. 12). Indeed, the

SLP signal linked to December SIC most resembles a negative

NAO, while that linked to the North Atlantic SST tripolar

anomalies has similarity with a positive NAOwith a southward

shift of anomaly centers, and with associated anticyclonic

anomalies over Scandinavia. Such a pattern is consistent with

Han et al. (2016), who showed opposite SST and SIC impacts

on the atmosphere in late winter. The SLP signal linked to

December Ural blocking occurs west of the British Isles and

does resemble the NAO. To quantify the influence of these

factors on the NAO, we have performed the multivariate re-

gression using the February NAO index as predictand. As

shown by the coefficient of determinations (R2) in Fig. 13a,

December SIC, SCE, and SST contribute comparatively (e.g.,

R2 5 0.23 for SIC and 0.15 for SCE) to the NAO variability,

while December Ural blocking has a weaker influence. It

is noted that the explained NAO variance is substantially

increased when the four (or the first three) indices are used

together as predictors. Similar results are found when using

Peings’s (2019) area-averaged Z500 blocking index (Fig. 13b).

Since Peings (2019) suggested that November Ural blocking

influences theNAO,we also performed themultiple regression

using the November Ural blocking indices instead of the

December ones, but the influence on the NAO remained small

(not shown).

In summary, our MCA results between the December SIC

and February SLP is influenced by the concomitant SCE, SST,

and, to a much lesser extent, Ural blocking. Quantitatively, the

February signal that can be attributed to SIC change in our

multiple regression model is about 2.5 hPa over the Icelandic

region (area-averaged values over the green box in Fig. 12a.

This box is chosen to cover the northern center of action for

NAO), which accounts for 50% of that in the MCA results

(about 5 hPa over the same green box).

We next perform the same MCA on ALL MMEM SLP

fields to assess if the MCA modes found in ERA5 are repro-

duced in AGCM simulations with all forcings (Fig. 14). Even

though MMEM should be less affected by internal variability

than ERA5, there is no significant SC at 10% significance level.

The highest statistical significance for the SC (20%) is reached

in three cases for December SIC leading SLP, but in all the

cases a SIC decline in the BK Seas leads a positive NAO-like

SLP inMarch, opposite to the ERA5 results (perhaps primarily

FIG. 11. Regressions of November Z500 (m), the concomitant SST (K) and snow cover extent (SCE; %)

anomalies onto the SIC MCA time series in (a),(b) November and (c),(d) December. The cyan and magenta

contour lines indicate 5% local significance level and field significance, respectively.
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reflecting the influence of the concomitant SST tripolar anoma-

lies; see Fig. S5).

More significant MCA results are found using SI MMEM

(Fig. 15), very likely because the influence of interannual SST

and radiative forcing has been sufficiently reduced in SI

MMEM. The November SIC–December SLP is not statisti-

cally significant, perhaps because of the observed correlation

between the BK SIC and Eurasian SCE is not reproduced in

AMIP-type simulations. On the other hand, the December

SIC–February SLPMCAmode has high statistical significance

with 3% for SC and 0% for R (Figs. 15a,b). Its SIC and SLP

spatial patterns (Figs. 15c,d) largely resemble those of ERA5

(Figs. 10e,f and 12) with a large sea ice decline in the BK Seas,

albeit not in the Greenland Sea, and a negative NAO-like SLP

pattern. Similar negative NAO-like dipolar patterns, albeit

somewhat tilted, are also found in other MCA pairs, which

include the Greenland Sea SIC decline [e.g., January SIC–

February SLP (shown in Figs. 15e–f) and February SIC–March

SLP (not shown), where either SC or R is 10% significant].

These SI MMEM MCA modes thus resemble the December–

February mode in ERA5, but their SCs are one order of

magnitude smaller. The amplitude of the regressed SLP pat-

terns above the Icelandic region (e.g., area-averaged value

over the green box in Fig. 15d) is about 0.46 hPa, less than 20%

of the multivariate ERA5 estimate (2.5 hPa). To investigate if

the smaller SLP values of AGCMs are sensitive to selected

region, we also consider the values averaged over a larger

spatial extent and obtain similar model underestimations: the

SI MMEM SLP value averaged over the northern domain

(608–908N, 908W–08) is about 0.47 hPa, smaller than the mul-

tivariate ERA5 estimate that is 1.37 hPa; the SI MMEM SLP

value averaged over the southern domain (208–508N, 908W–08)
is about 20.05 hPa, smaller than the multivariate ERA5 esti-

mate that is20.37 hPa. These results suggest that the AGCMs

may underestimate the strength of SLP–SIC covariability.

5. Summary and discussion

This study uses two sets of coordinatedAGCMexperiments,

one with observed Arctic SIC prescribed during 1979–2014

and the other with climatological Arctic SIC, to examine the

impacts of Arctic sea ice on atmospheric circulation in the

Northern Hemisphere cold seasons (i.e., October to March).

We first compared the linear trends in the ALL MMEM (i.e.,

experiments with all the time-varying forcings, including SST,

SIC, greenhouse gases, aerosols, and solar radiation) to those

in ERA5. The warming SAT trends, which are large in regions

of Arctic sea ice loss, are consistent within the Arctic Circle in

terms of geographical pattern and magnitude between ALL

MMEM and ERA5. The Arctic warming trends in the lower

troposphere are also similar, suggesting that the AGCM sim-

ulations are realistic in the Arctic and the observed trends are

FIG. 12. Multiple regression of the ERA5 SLP anomalies in February onto the normalized (a) December SIC

MCA time series, (b) December Siberian snow cover index, (c) December North Atlantic SST index, and

(d) December Ural blocking index. The black and cyan stippling indicates 5% local significance level and field

significance, respectively. The green box in (a) delineates the region of 608–708N and 308W–08.
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the forced signal driven by SST, SIC, and external radiative

forcing. Comparing to OND and JFM global mean warming

trends in ERA5 (0.19 6 0.046 and 0.15 6 0.052K decade21)

and ALLMMEM (0.216 0.042 and 0.176 0.044K decade21),

the Arctic warming trends are about 4–5 times larger (0.98 6
0.29 and 0.616 0.33K decade21 for ERA5 and 1.096 0.18 and

0.68 6 0.17K decade21 for ALL MMEM), illustrative of the

Arctic amplification. We also show that the 95% confidence

interval reflects the effect of internal atmospheric variability

compared to model uncertainty, and that the spread of Arctic-

averaged SAT trend among members is comparable to the

estimated uncertainty in ERA5 trends. In the North Pacific

and Atlantic sectors, the ERA5 trend pattern is also realis-

tically simulated. Over the continents, however, the weak

warming trends (except in northwestern North America) in

ALLMMEM cannot be compared, as the SAT trends are not

statistically significant in ERA5, except in a few small con-

tinental regions.

The comparison is more difficult for the trends of dynamical

variables such as SLP, geopotential height, and zonal wind in

the troposphere and stratosphere because the observed trends

are generally not statistically significant and reflect the large

internal atmospheric variability. As such, the forced trends in

the atmospheric circulation cannot be reliably estimated using

observations or a single AGCM simulation. The effects of in-

ternal variability are reduced inMMEM, and the SLP trends of

ALL MMEM within the Arctic present a significant SLP de-

crease in OND over the Arctic and much of Eurasia, and

positive trends over the easternNorth Pacific and northwestern

North America. However, there is no field significant SLP

trend in JFM, suggesting that the SST, Arctic sea ice loss, and

external radiative forcing are more effective in driving near-

surface atmospheric circulations in autumn than in winter.

Noteworthy is that the spread of Arctic-averaged SLP trend

among members is comparable to the estimated uncertainty

in ERA5 trends and largely due to internal variability, with

model uncertainty playing a much smaller role than for SAT.

The trends driven by theArctic sea ice variability are singled

out in SI MMEM, quantified by the difference between the

MMEMs of ALL and SICclim (corresponding experiments

where the time-varying SIC is replaced by its mean seasonal

cycle). The SI MMEM shows that in OND and JFM the SAT

warming trends found inALLMMEMandERA5 in regions of

sea ice decline are indeed mainly driven by sea ice loss, which

account for more than 50% of the warming trends in ALL

MMEM and ERA5. In both seasons, the warming trends

due to sea ice loss extend over northern Eurasia and North

America in SI MMEM, but their magnitude is small, even

compared to ALL.

A strong local decrease dominates the SLP trends near the

sea ice edge, as expected from a thermodynamical response to

oceanic heat release, although it is somewhat masked in JFM

by a significant dynamical barotropic response that resembles a

negative AO-like circulation pattern and extends up to the

stratosphere, weakening the circulation there. Correspondingly,

sea ice loss induces a southward shift of the tropospheric jet

stream. These JFM circulation changes may be related to the

thermal wind adjustment to reduced meridional temperature

gradient, the associated eddy feedback and/or troposphere–

stratosphere coupling processes. These results support previ-

ous modeling studies that found a negative AO-like response

in winter to an Arctic sea ice reduction (e.g., Seierstad and

Bader 2009; Peings andMagnusdottir 2014). Our trend analysis

is also qualitatively consistent with the observational study of

Simon et al. (2020), which found that an Arctic sea ice loss

should drive a negative NAO-like signal in winter, but has

a negligible large-scale impact in autumn. However, in our

analysis, the winter trends in SI MMEM are substantially

smaller than those in Simon et al. (2020). For example, the

winter SLP over a North Atlantic–northern Europe region

increases at a rate of 0.21 6 0.18 hPa decade21 and Z500 in-

creases at a rate of 3.7 6 2.0m decade21, while in the obser-

vational estimates the Icelandic high could increase by as much

as 56 4hPa decade21 for SLP and 606 40m decade21 for Z500.

FIG. 13. (a) R2 values of multiple regression using the February

NAO index as predictand and December SIC PC1, December

North Atlantic SST index, December Siberian snow cover index,

and December Ural blocking index following the definition of

Scherrer et al. (2006) as predictors. ALL indicates the R2 value

when all four indices are used in themultiple regressionmodel. The

levels of statistical significance are indicated in the parentheses.

(b) As in (a), but for December Ural blocking following the defi-

nition of Peings (2019).
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Although these observational estimates are upper bounds as

they are based on perpetual winter conditions and assumption

of linearity, they are much larger than in the MMEM. It is

noted that these trend estimates are much larger than observed

(Fig. 3; see also Blackport and Screen 2020b), but observed

trends should also be influenced by SST changes and external

forcings.

This discrepancy led us to investigate whether the AGCMs

can represent the impact of Arctic sea ice variability on the

cold season atmospheric circulation at interannual time scale.

Such influence in observations has been extensively docu-

mented in the literature (e.g., Frankignoul et al. 2014; King

et al. 2016; Nakamura et al. 2016; Yang et al. 2016; Koenigk

et al. 2016; García-Serrano et al. 2015, 2017; and many others)

and wasmore robustly characterized in Simon et al. (2020). For

this purpose, MCA is used between detrended SIC anomalies

and lagged SLP anomalies in the North Atlantic–Europe sector,

and it is compared with ERA5 counterparts during the same

1979–2014 period. As in the studies above mentioned, we

considered relation between SIC and the atmosphere lagging

by at least one month, which should suffice to separate a pos-

sible atmospheric response to SIC changes from the direct at-

mospheric forcing of these changes (e.g., Frankignoul et al.

2014; Gastineau and Frankignoul 2015; Blackport et al. 2019;

Screen and Blackport 2019; Blackport and Screen 2020b), in

view of the short memory time scale of the internal atmospheric

variability in the middle and lower troposphere. Possible con-

founding influencewere also examined usingmultiple regression

since, for example, Gastineau et al. (2017) showed that con-

comitant Siberian SCE anomalies had a similar but larger in-

fluence on the observed early winter atmospheric circulation

compared to the response to the BK Seas SIC. Simon et al.

(2020) found similar results for the atmospheric response in

December to interannual SIC variability, but a SIC influence

FIG. 14. (a),(b) As in Figs. 10a and 10b, but for ALLMMEM (165 members) SLP. (c),(d) As in Figs. 11c and 11d,

but for December SIC and March ALL MMEM SLP fields. (e),(f) As in (c) and(d), but for December SIC and

February ALL MMEM SLP fields.
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on the NAO later in winter was not significantly affected by

concomitant SST or SCE variability. Also, Peings (2019) sug-

gested that an apparent SIC impact on the winter atmospheric

circulation might arise from prior Ural blocking variability

influencing both the BK SIC and the stratosphere, which in

turn affected the NAO throughout the winter (see also Luo

et al. 2016, 2018).

The most significant mode of lag covariability in ERA5 is

between November SIC and the following December SLP,

which is manifested as sea ice decline over the BK Seas

preceding a negative NAO-like pattern. However, the negative

NAO signal was found to be dominated by the influence of

confounding factors, namely concomitant Siberian SCE anoma-

lies, consistent with Gastineau et al. (2017), and North Atlantic

SST anomalies, as in Czaja and Frankignoul (1999, 2002),

which were presumably in part driven by the same atmospheric

fluctuations as the BK SIC anomalies. On the other hand,

November Ural blocking had negligible influence. In contrast

to ERA5, no significant corresponding MCA mode was found

between November SIC and the following December SLP in

either ALLMMEMor SIMMEM, perhaps in part because the

interannual snow cover changes in the AGCMs are essentially

independent of the prescribed SIC variations.

Consistent with García-Serrano and Frankignoul (2016)

and many others, another significant MCA mode was found

in ERA5, showing that a SIC decrease in the Barents and

Greenland Seas in December precedes the occurrence of a

negative NAO-like pattern in February. The mode is equiva-

lent barotropic but without significant signature in the strato-

sphere. The possible influence of concomitant SCE and SST

anomalies was also investigated, along with that of December

Ural blocking. Multiple regression analysis showed that December

BK SIC, North Atlantic SST, and Siberian SCE anomalies

significantly contributed to SLP in February, with the pattern

FIG. 15. (a),(b) As in Figs. 10a and 10b, but for SI MMEMSLP. (c),(d) As in Figs. 10c and 10d, but for December

SIC and February SIMMEMSLP fields. (e),(f) As in (c) and (d), but for January SIC and February SIMMEMSLP

fields. The green box in (d) delineates the region 608–708N, 308W–08.
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linked to SIC most resembling the negative NAO, while that

linked to SST had the opposite sign, consistent with Han et al.

(2016). In contrast, the contribution from December (or

November) Ural blocking to the NAO was smaller. Based on

multiple regression, December SIC, Siberian snow cover and

North Atlantic SST contributed substantially to the February

NAO, and the signal that could be attributed to BK SIC

in ERA5 reached an amplitude of about 2.5 hPa near the

Icelandic region, about 50% of that suggested by the lagged

MCA between SIC and SLP.

In ALL MMEM, there was no 10% significant mode be-

tween SIC and SLP in the same North Atlantic–Europe sector,

and the only MCA mode that reaches the 20% significance

level (December BK SIC leading March SLP) had an opposite

polarity in SLP to the ERA5 one, possibly reflecting interan-

nual North Atlantic SST tripolar forcing. On the other hand, a

significant MCA mode emerges in late winter when using SI

MMEM, with consistent SIC and SLP spatial patterns with

ERA5. The most significant MCA mode is a SIC decrease in

the BK Seas in December preceding a negative NAO-like

signal in February, but there were also similar modes, albeit

less significant, showing that a SIC decrease in the BK and

Greenland Seas during January precedes a negative NAO-like

SLP signal in February orMarch. However, the SLP amplitude

in SIMMEMonly reaches 0.5 hPa near the Icelandic region (or

northern part of North Atlantic), which is only about 20% of

our ERA5 estimate based on multiple regression model.

In summary, a negative NAO-like response to Arctic sea ice

loss is found in SI MMEM during mid-to-late winter when

considering both the trends and the interannual variability.

This is broadly consistent with observation-based estimates,

but the response to interannual SIC fluctuations is much weaker

in AGCMs than in the reanalysis data, suggesting that the

AGCMs might underestimate the response. Different AGCM

background states, insufficient physics and parameterizations of

turbulence, missing effects of leads on the ocean–atmosphere

heat exchange (Marcq and Weiss 2012; Davy 2018), cloud mi-

crophysics (Screen et al. 2018), or sea ice configuration such as

constant sea ice thickness in AGCMs (Lang et al. 2017), could

be responsible for this underestimation. We do not find an

indication that the spatial resolution could be a factor, since

EC-Earth3-NLeSC and HadGEM3-GC3.1, with nominal 40-

or 60-km horizontal resolutions that are higher than the other

AGCMs, do not seem to behave differently from the other

AGCMs, but other high-resolutionmodels should be considered

before ruling out the influence of spatial resolution.

The lack of active atmosphere–ocean coupling in AGCMs

has been argued to play some roles in the weakness of the

Arctic–midlatitude linkages at longer time scales (e.g., Deser

et al. 2015, 2016a). Although García-Serrano et al. (2017) ob-

tained lagged MCA results in coupled simulations rather

comparable to observed ones, albeit with a smaller response

amplitude, a growing body of studies with CGCMs show larger

atmospheric circulation variation associated withArctic sea ice

changes (e.g., Blackport et al. 2019; Blackport and Screen

2020a,b, 2021; Cohen et al. 2020; Dai and Song 2020). More

efforts are needed to investigate the role of atmosphere–ocean

coupling, which could be done by comparing uncoupled and

coupled simulations from the Polar Amplification Model

Intercomparison Project (Smith et al. 2019) or multimodel

large ensemble datasets (Deser et al. 2020). We also note that

the weak response hinted at here could resonate with the so-

called signal-to-noise paradox, in which the state-of-the-art

climate models generally have much lower predicted vari-

ability (maybe relating to forced variability this study focuses

on) than the observed one (Scaife and Smith 2018).

Finally, our suggestion that AGCMs underestimate the at-

mospheric response to Arctic sea ice changes must be viewed

with caution since it relies on the analysis of 35 years of

satellite-based SIC observations and their relation to the at-

mosphere, which is a relatively short period. Hence, it cannot

be excluded that the results are intervened by the large internal

atmospheric variability (e.g., Blackport and Screen 2021).

Also, they may not be representative of earlier periods, since

Kolstad and Screen (2019) suggested that the recent BK SIC–

NAO relationship in observations is particularly high over the

course of twentieth century. Conducting GCM experiments

with SIC, albeit less accurate, and other forcings from earlier

periods (thus with different background states and potential

nonstationarity of the confounding factors) or applying causal

effect network (e.g., Rehder et al. 2020) to observations with

longer record period could help assess if AGCMs indeed un-

derestimate the atmospheric response to Arctic SIC changes.
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